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Abstract 

Air quality is an aspect that gains more and more attention in the general public, as knowledge on the 
harmful effects on human health and the environment increase. Along with this, interest in low-cost 
instrumentation that enables end-users to measure particulate matter has grown, both for individuals, 
as well as for the use in distributed sensing scenarios. In this paper, we report on the design of an 
ultra-low-cost clip-on sensor for light-scattering particle measurements with camera smartphones. We 
present three design iterations and discuss the lessons learned during the design process and 
advantages and drawbacks of different design decisions. Aside from the specific hardware design, we 
discuss general errors that are likely to occur when non-experts carry out the measurement process 
and countermeasures to deal with them, independent from the sensor technology that is being used. 
This includessomehints for designing appropriate interaction in smartphone applications. 

Keywords: Clip-on sensor;Camera smartphone; Participatory sensing; Air quality monitoring; Ubiquitous 
computing; PM; Citizen science; Environmental sensing; Mobile computing; Light-Scattering; Low-Cost; 
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1. Introduction & related work 

Methods and devices for low-cost particulate matter measurement have received 
growing attention in the past years as air quality monitoring is currently undergoing a 
paradigm shift (Snyder, et al., 2013). An underlying reason is that bad air quality is a 
growing issue, especially in large metropolitan areas. This has lead to citizens developing a 
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growing interest and concern for the quality of air in their direct surroundings. As 
urbanization progresses and so-called megacities increasingly form, these problems will 
continue to grow. Different scenarios for future air quality monitoring have been conceived, 
ranging from continuous sensing with vehicular networks to mobile air quality 
measurements performed by end-users with portable miniaturized samplers (Budde et al., 
2014). Among these, especially the latter are challenging. Citizen Science performed by 
everyday users with personal mobile devices in the public domain, a.k.a. Participatory 
Sensing (Burke et al., 2006), imposes a number of potential issues. Primarily, there is 
naturally the design of suitable sensors, which can be embedded into personal handheld 
devices. Furthermore, and independent from the applied sensing technology, there is the 
question of adequate measures to ensure the correct measurement process when carried out 
by non-experts. 

This work presents the design of a light-scattering particle sensor for camera 
smartphones to be used in participatory environmental sensing and discusses design 
choices, tradeoffs and experiences. The original concept of the sensor has been presented 
by (Budde et al., 2013). We show subsequent design iterations and discuss non-expert user 
errors and measures that can be implemented to deal with them. Other efforts to enable 
particulate matter sensing with smartphones have been made in the past: (Carminati et al., 
2014) presented the design of a capacitive particle sensor that has the potential to be micro-
fabricated and embedded in to phones. In a different approach, (Doering et al., 2012) 
enabled direct measurement of the mass concentration of particles with an air-microfluidic 
MEMS design. Finally, the iSPEX system is a passive spectropolarimetric clip-on module 
for the iPhone (Snik et al., 2014), similar to the clip-on concept in this work. 

2. Hardware design 

This section first presents some theoretical considerations regarding the field of tension 
between different design parameters of the sensor. Subsequently, three design iterations are 
presented and the benefits and drawbacks of different design variants are discussed. 

2.1 Estimations regarding measurement quality 

Particulate matter is a discrete measurement variable, meaning that dust is composed of 
discrete particles, entering the measuring chamber at discrete events. The pure act of 
counting these discrete signals within a given volume is a stochastic process. Such 
processes obey a Poisson probability distribution if the expected mean counting rate 
<dn/dt> can be assumed to be constant. For such Poisson processes the mean number <n> 
of measured events is correlated to the standard deviation 𝜎𝜎𝑛𝑛  of the measured signal: 

 
This gives constructive limitations to the measurement device if a certain amount of 
statistical error is not to be exceeded. An indicator for the theoretically achievable precision 
and repeatability is given by the coefficient of variation (CV): 

 
For growing numbers <n> the coefficient of variation improves.  

Concerning our concrete use case of measuring fine dust with ultra low-cost sensors, we 
make the following assumptions: a sufficiently small sampling duration T is one in which 

14 ProScience 3 (2016) 13-20



growing interest and concern for the quality of air in their direct surroundings. As 
urbanization progresses and so-called megacities increasingly form, these problems will 
continue to grow. Different scenarios for future air quality monitoring have been conceived, 
ranging from continuous sensing with vehicular networks to mobile air quality 
measurements performed by end-users with portable miniaturized samplers (Budde et al., 
2014). Among these, especially the latter are challenging. Citizen Science performed by 
everyday users with personal mobile devices in the public domain, a.k.a. Participatory 
Sensing (Burke et al., 2006), imposes a number of potential issues. Primarily, there is 
naturally the design of suitable sensors, which can be embedded into personal handheld 
devices. Furthermore, and independent from the applied sensing technology, there is the 
question of adequate measures to ensure the correct measurement process when carried out 
by non-experts. 

This work presents the design of a light-scattering particle sensor for camera 
smartphones to be used in participatory environmental sensing and discusses design 
choices, tradeoffs and experiences. The original concept of the sensor has been presented 
by (Budde et al., 2013). We show subsequent design iterations and discuss non-expert user 
errors and measures that can be implemented to deal with them. Other efforts to enable 
particulate matter sensing with smartphones have been made in the past: (Carminati et al., 
2014) presented the design of a capacitive particle sensor that has the potential to be micro-
fabricated and embedded in to phones. In a different approach, (Doering et al., 2012) 
enabled direct measurement of the mass concentration of particles with an air-microfluidic 
MEMS design. Finally, the iSPEX system is a passive spectropolarimetric clip-on module 
for the iPhone (Snik et al., 2014), similar to the clip-on concept in this work. 

2. Hardware design 

This section first presents some theoretical considerations regarding the field of tension 
between different design parameters of the sensor. Subsequently, three design iterations are 
presented and the benefits and drawbacks of different design variants are discussed. 

2.1 Estimations regarding measurement quality 

Particulate matter is a discrete measurement variable, meaning that dust is composed of 
discrete particles, entering the measuring chamber at discrete events. The pure act of 
counting these discrete signals within a given volume is a stochastic process. Such 
processes obey a Poisson probability distribution if the expected mean counting rate 
<dn/dt> can be assumed to be constant. For such Poisson processes the mean number <n> 
of measured events is correlated to the standard deviation 𝜎𝜎𝑛𝑛  of the measured signal: 

 
This gives constructive limitations to the measurement device if a certain amount of 
statistical error is not to be exceeded. An indicator for the theoretically achievable precision 
and repeatability is given by the coefficient of variation (CV): 

 
For growing numbers <n> the coefficient of variation improves.  

Concerning our concrete use case of measuring fine dust with ultra low-cost sensors, we 
make the following assumptions: a sufficiently small sampling duration T is one in which 

the mean counting rate does not change significantly. Of course, one can imagine fast 
intense events perturbing the particle concentration that would technically influence the 
average counting rate. However, in the majority of scenarios, mean concentrations of fine 
dust can be assumed to be constant over intervals in the range of minutes. For near-real-
time particulate matter sensing this would be an acceptable temporal resolution. We argue 
that the few cases in which these measurement constraints are not met are more or less 
negligible since our design aims at distributed sensing scenarios with many dense and 
possibly redundant individual measurements. 

In general, one wants to capture and detect as many particles as possible within a single 
measurement. For a certain mean concentration c, a detector volume V, a mean particle 
diameter pm, and a mean density ρ, the theoretical coefficient of variation (respectively the 
amount of error) is: 

 
As an example, for a mean concentration of c = 10.0 µg/m³(typical background 
concentration in industrialized countries), a measurement volume of V = 1000 mm³ (10 mm 
edge length), a mean particle diameter of pm = 10µm and a density of ρ = 2.5 g/cm³ (which 
is in the range of common particulate matter solids), the relative statistical error would be A 
≈ 1140%. Thus a single detector of such characteristic length scale cannot measure such 
concentrations reliably. However, by performing several independent measurements within 
the time interval I, in which the counting rate <dn/dt> is assumed to be constant, one can 
effectively improve the CV rating if the individual readings are treated as a single big 
measurement. E.g. for a measurement rate f and a sampling duration T, we reach an 
effective CV as 

 
If we consider the calculation for the example above again, a number of k ≈ f,·T = 52349 
independent measurements which e.g. correspond to a time period of T ≈ 8.72 min and a 
measurement rate of f = 100Hz have to be performed to lower the CV rating to 5%. Table 1 
shows different combinations of these parameters for various sampling frequencies (current 
smartphone cameras easily reach 30 – 60 Hz) and measurement durations. 

Table 1. Theoretical estimations for different sampling times and frequencies for the measurement of particles of 
10µm diameter in a 1000 mm³ detector volume.𝐶𝐶𝑉𝑉𝑒𝑒denotes the relative statistical error that can be achieved 

Coefficient of Variation (𝑪𝑪𝑽𝑽𝒆𝒆) Sampling frequency (f) Sampling duration (T) 
5% 30 Hz ~ 29.0 min 
5% 60 Hz ~ 14.5 min 
10 % 30 Hz ~ 7.3 min 
10 % 60 Hz ~ 3.6 min 
20 % 30 Hz ~1.8 min 
20 % 60 Hz ~ 50 sec 

This shows that theoretically meaningful readings with a small sensor of 1 cm edge length can 
be carried out, given sufficiently high sampling frequencies and measurement intervals. As 
sampling frequencies are very likely to increase further in future smartphone generations, 
smaller sampling durations that can still guarantee high data quality will become possible. 
Still, even with current technology, the constraints of our scenario can be met. 

ProScience 3 (2016) 13-20 15



2.2 Design iterations and lessons learned 

The original proof-of-concept version of the clip-on light-scattering sensor as presented 
by (Budde et al., 2013), is shown in Fig. 1(a). That version basically consisted of an 
original Sharp GP2Y1010 dust sensor that was attached to the back of a smartphone so that 
the phone’s camera replaced the original photodiode receptor. The light of the phone’s LED 
flash was rerouted to the position of the LED in the original sensor using an optical fiber. 
This prototype demonstrated the general feasibility of the clip-on light-scattering approach, 
but did not yet achieve a sensitivity suitable for realistic applications.  

 
(a) (b)   (c) 

Fig. 1. Design iterations: the first generation design used a Sharp GP12P1010 dust sensor casing and an optical fiber 
to re-route the light from the camera flash (a). In the second generation, a custom sensor casing was prototyped in 3D-

printing (b). Active versions using external LEDs (c) were tested for comparison in both generations 
 
When comparing the passive version to an active one that – instead of the optical fiber – 

featured an externally powered white LED, we observed that the principle was sound, but 
the passive version failed to produce a sufficient light intensity within the measurement 
chamber. The reason for this likely was that camera phones’ LED flashes are designed to 
emit diffuse light which made the coupling to the optical fiber very ineffective. In the 
second generation (Fig. 1(a) and (b)), we therefore introduced semi-spherical lenses to 
improve this. Still, also in this generation, the active version clearly outperformed the 
passive one. Therefore, we switched to a mirror-based layout in the third and current 
generation (see Fig. 2). 

We kept true to the strategy of designing an active and a passive version in parallel, as 
there are certain advantages and drawbacks to both designs: The biggest advantage of the 
passive version is simply that: it is passive. It is ultra-low-cost and the control of the whole 
measurement can be implemented in software on the phone. A drawback is that the layout 
of the camera and the flash is model dependent, so the physical sensor design has to be 
adopted for different phone types. Proper ventilation of the measurement chamber to ensure 
that individual measurements are actually independent may also be an issue. The active 
version on the other hand need some sort of power supply for the LED and possibly an 
additional interaction (turn on/off) by the user. This could also cause secondary effects, 
such as possible limitations of the runtime, or negative effects (especially for 
environmentally conscious users) if consumables, e.g. external batteries, are frequently 
required. Possible solutions to circumvent this are discussed in the next section. On the 
other hand, the active version can potentially be attached to a wider range of phones 
without individualized design. 
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(a) (b) 

Fig. 2. The third generation concept (a) features a mirror instead of optical fibres and a changed light trap layout. A 
prototype was designed for a Galaxy S6 (b, side opened for inside view). Initial results are promising, but the real-

world performance of different versions regarding the theoretical assumption in Sec. 2.1 is currently being evaluated 

2.3 Powering external electronics and other issues 

As described in the previous section, the active version of the sensor requires some sort 
of energy source to power the LED and possibly a micro fan. In order to supply the LED 
we used in our prototype, we require 20 mA @ 3.2 V that we need in rated operation, which 
corresponds to a power of P = U * I= 64 mW. Adding a micro fan for ventilation would 
additionally add upwards of 35 mA @ 2V =70mW.  

If we were to use standard batteries, options are either tubular batteries or some sort of 
coin cell(s). With a standard CR2032coin cell (230 mAh @ 3V), we could operate our setup 
for ~1.7h, two would bring up to a maximum of ~3.5h. AAA batteries, which would 
notably increase the size of the setup, come at up to 1100 mAh @ 1.2V, which would mean 
two batteries would be needed to power the setup for up to 
~8.5h.StandardLiPorechargeable batteries with a higher energy density and suitable 
dimensions (e.g. from Adafruit1,34 x 62 x 5mm) can provide up to1200 mAh@3.7 V, 
providing energy for up to ~9 h of operation.  

Among energy harvesting approaches (e.g. converting solar, thermal, kinetic energy, 
etc.), solar panels are currently the only option that can potentially deliver the amount of 
energy needed for operation of our setup (or, in combination with batteries, to recharge 
them) while also fitting our size constraints. Small cells2 (35 x 22mm) with an efficiency of 
22% can deliver up to ~100mW at maximum power point. Integrating two or three onto the 
surface of the sensor could be a realistic option that could potentially remove the 
requirement to charge the sensor (at the cost of additional parts and engineering 
complexity).  

A different approach would be to power the external components through the phone. 
One option to do this is would be to pull power from the mobile phone’s audio interface 
(i.e. microphone jack), as proposed by (Kuo et al., 2010).  Relevant to the question whether 
this is feasible or not is primarily the power that can be drawn. In their work, they describe 
that under optimum laboratory conditions (a perfectly adapted load), they were able to 
reach a current of 66mA @ 250mV, i.e. 15.8 mW. Even without the loss that converting this 
voltage to suitable levels, the approach of powering the LED directly through the 
headphone jack, let alone an additional fan, is not feasible. 

                                                 
1https://www.adafruit.com/product/258 
2http://www.digikey.com/short/39vczc 
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Another option to draw power from the smartphone would be USB On-The-Go (OTG). 
This has the benefit of being in principle able to supply sufficient power, theoretically up to 
500mA @ 5V.However, according to the USB 2.0 OTG specification (USB Implementers 
Forum Inc., 2001), devices acting as OTG power source must only provide a minimum 
current of 8mA@ between 4.4 V and 5.25V, anything beyond is allowed based on 
negotiation, but not guaranteed. Realistically, this means that for handheld portable 
devices100mA @ 5V are a commonly accepted maximum for external loads (Texas 
Instruments, 2010). A drawback is that this approach could possibly require introducing 
additional electronics on the sensor side in order to authenticate to the phone and negotiate 
the power supply. However, as added bonus, this would also allow communication over the 
same connection, which would eliminate the need for the user to actively switch on the 
sensor module. The communication could also be realized in a different manner, e.g. by 
controlling the sensor via Bluetooth. However, this would mean adding a suitable 
communication module and by that further increasing the complexity of the module. 

In summary, the active design of the sensor is more flexible, but also much more 
intricate than the passive one. Of the options for powering an external sensor module, the 
microphone jack approach can be discarded as infeasible and using non-rechargeable 
batteries could lead to an acceptance problem(producing too much waste). The other 
approaches have their pros and cons, ranging from simple solutions requiring more user 
interaction and maintenance (rechargeable batteries) to more sophisticated solutions that 
involve external electronics, making them more expensive in terms of design and unit costs. 
We propose that the passive solution, provided it can properly be ventilated, is the most 
elegant one. When designing the active sensor, the approaches using USB OTG or 
rechargeable LiPo batteries (possibly recharged via small solar panels) are options we 
intend to explore further. 

3. Application design 

Independent from the hardware sensor technology, smartphone-based fine dust sensing 
needs suitable signal processing techniques and appropriate user interfaces. This is 
especially vital since non-expert users perform the sampling to an increasing degree. This 
can be problematic in terms of data quality, as typical requirements for correct 
measurement procedures typically cannot be ensured. Non-expert users could handle the 
clip-on equipment wrong or perform process steps incorrectly (e.g. because they are 
untrained, overwhelmed, or inattentive). Designing the application software appropriately 
can help to mitigate these problems. This can be done on different levels.  

3.1 Designing for non-expert participants 

When designing for non-expert participants, Training users is the most obvious way of 
making sure that non-experts perform a task correctly. However, at a large scale, training 
individual participants is simply not feasible. A closely related measure is that of providing 
a set of instructions (e.g. manuals or tutorials) in order to help users understand the 
measurement process. A possible drawback of this approach is that people might fail to 
understand or recall new material if it is sufficiently complex. If possible, in shorter form 
and closely to the task, e.g. as an in-app tutorial, instructions can be a good approach. 
Providing feedback to the user is also a helpful measure. When collecting data, feedback 
can be either given live, e.g. by displaying pollution levels while measuring, or directly 
after completing a measurement, or as a visualization in a greater context, e.g. data 
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overview on a map. Especially live feedback provides the possibility to help the users better 
understand the effects of their actions on the sensing process. Simple repetition of 
measurements leads to multiple instances of the same data which can then in turn be 
processed, e.g. to remove outliers. This approach only works if the overall error is non-
systematic, i.e. people will on average perform the task correctly. A more sophisticated way 
of computationally addressing procedural errors is recognition. This ranges from checking 
whether the GPS receiver is enabled or the accelerometers of the phone pick up movement 
when there should be none, to full-fledged activity recognition. All the aforementioned 
mechanisms can possibly also be used in games that beyond incentivizing participation, use 
game mechanics to support correct sensing, as proposed in (Budde et al., 2016). 

3.2 Addressing errors on a signal processing level 

A very robust way to deal with different types of erroneous data of phenomena that can 
be modelled as particles was originally presented in (Budde et al., 2015): robust signal 
reconstruction from Poisson noise. Errors may stem from low-cost equipment (e.g. 
systematic cross-sensitivity), sensor aging (e.g. dirt residue, LED degradation), limited 
control (e.g. automatic adjustment of camera settings) and, again, users (e.g. device 
handling, assembly). In camera-based sensing, if a user instance were to inadvertently put a 
smudge on the lens, this would create an offset in readings afterwards. 

Fig. 3. An approach for reconstruction of a signal from its Poisson noise for phenomena that can be modelled as 
particles was shown in (Budde et al., 2015). It is robust against changing offsets and/or systematic drift 

The idea behind the reconstruction approach is to exploit the fact that particle 
measurements are afflicted with sensor-dependent noise. Thus, it is possible to reconstruct 
the true signal from the noisy one. As discussed above, in Poisson processes the mean 
number <n> of measured particles is correlated to the standard deviation 𝜎𝜎𝑛𝑛  of the 
measured signal: 

 
As a result, knowledge of the standard deviation of the measured signal is sufficient to 
reconstruct the signal as a whole. This can be a great advantage, since the standard 
deviation is calculated against the mean value and thus has a relative property which 
neglects constant shifts due to e.g. decalibration in the signal.  
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4. Conclusion  

In this paper, we reported on advances in smartphone-based particulate matter sensing. 
The progress in the design of low-cost clip-on instrumentation to enable light scattering fine 
dust measurements using camera smartphones was presented. General issues that arise 
when air quality sensing technology ultimately starts to disappear into end-user devices in 
the future were discussed. Central to this – next to the actual sensing hardware of course – 
are approaches to deal with untrained, non-expert users performing the sampling, and the 
effects this can have on data quality. Aside from presenting techniques that target user 
handling, we discussed a signal processing approach to directly stabilize sensor readings.  

5. Acknowledgements 

This work has been partially funded by the German Federal Ministry of Education and 
Research (BMBF) as part of Software Campus (grant 01IS12051). The authors wish to 
thank Simon Leiner for his input on the section on energy estimations. 

References 

Budde M., Barbera P., El Masri R., Riedel T., Beigl M. (2013). Retrofitting Smartphones to be Used as Particulate 
Matter Dosimeters. International Symposium on Wearable Computers (ISWC'13), 139-140. 

Budde M., Köpke M., Beigl M. (2015). Robust, In-situ Data Reconstruction from Poisson Noise for Low-cost, 
Mobile, Non-Expert Environmental Sensing. International Symposium on Wearable Computing (ISWC’15), 
179-182. 

Budde M., Öxler R., Beigl M., Holopainen J. (2016). Sensified Gaming – Design Patterns and Game Design 
Elements for Gameful Environmental Sensing. 13th International Conference on Advances in Computer 
Entertainment Technology (ACE2016). 

Budde M., Zhang L., Beigl M. (2014). Distributed, Low-cost Particulate Matter Sensing: Scenarios, Challenges, 
Approaches. ProScience 1, pp. 230-236. doi:10.14644/dust.2014.038. 

Burke J.A., Estrin D., Hansen M., Parker A., Ramanathan N., Reddy S., Srivastava M.B. (2006). 
ParticipatorySensing. Center for Embedded Network Sensing. 

Carminati M., Pedalà L., Bianchi E., Nason F., Dubini G., Cortelezzi L., Ferrari G., Sampietro M. (2014). 
Capacitive detection of micrometric airborne particulate matter for solid-state personal air quality monitors. 
Sensors and Actuators A: Physical, 219, 80-87. 

Doering F., Paprotny I., White R. (2012). MEMS air-microfluidic sensor for portable monitoring of airborne 
particulates. Technical Digest - Solid-State Sensors, Actuators, and Microsystems Workshop,  315-319. 

Kuo Y.-S., Verma S., Schmid T., Dutta P. (2010). Hijacking power and bandwidth from the mobile phone's audio 
interface. Proceedings of the First ACM Symposium on Computing for Development, p. 24. 

Snik F., Rietjens J., Apituley A., Volten H., Mijling B., Di Noia A., . . . Keller C. (2014). Mapping atmospheric 
aerosols with a citizen science network of smartphone spectropolarimeters. Geophysical Research Letters 
41(20), 7351-7358. 

Snyder E.G., Watkins T.H., Solomon P.A., Thoma E.D., Williams R.W., Hagler G.S., Shelow D., Hindin D.A., 
Kilaru V.J., Preuss P.W. (2013). The changing paradigm of air pollution monitoring. Environmental Science 
& Technology 47(20), 11369-11377. 

Texas Instruments. (2010, June). Battery chargers in USB OTG devices. Retrieved Nov. 2016, from 
http://www.ti.com/lit/wp/sszy001/sszy001.pdf 

USB Implementers Forum Inc. (2001, Dec. 18). On-The-Go Supplement to the USB 2.0 Specification Rev1.0. 
 

20 ProScience 3 (2016) 13-20


